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Abstract

Fault-tolerance is an important issue in
network design because sensor networks must
function in a dynamic, uncertain world. In this
paper, we propose a functional characterization of
the fault-tolerant integration of abstract interval
estimates. This model provides a test bed for a
general framework which we hope to develop to
address the general problem of fault-tolerant
integration of abstract sensor estimates. We
further propose a scheme for narrowing the width
of the sensor output in a specific failure model and
give it a functional representation.

The main distinguishing feature of our
model over the original Marzullo's model is in
reducing the width of the output interval estimate
significantly in most cases where the number of
sensors involved is large.

1.0 INTRODUCTION

In recent years, the increasing
sophistication of surveillance systems and
tracking mechanisms has generated a great deal of
interest in the development of new computational
structures and strategies for detecting and tracking
multiple targets, using data from many sensors.
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The design of spatially distributed target-
detection-and-tracking systems involves the
integration of solutions obtained by solving
subproblems in data-association, hypothesis-
testing, data-fusion, etc.This must include the
cooperative solution of problems by a
decentralized and loosely coupled collection of
processors, each of which integrates information
received from a cluster of spatially distributed
sensors into a manageable and reliable output for
further integration at a higher level. Integration
of information at the sensor level requires
techniques to be developed to abstractly represent
and integrate sensor information. Further these
techniques have to be robust in the sense that even
if some of the sensors are faulty, the integrated
output should still be reliable. For details on
multi sensor integration and fusion in intelligent
systems, see [ BiBr 90, LuKa 89, HAMD 87, LulLi 88,
Duwh 88, Zhen 89].

The aim of this paper is to present a fault-
tolerant computational model for sensor
integration in Distributed Sensor Networks.

A Distributed Sensor Network (DSN)
consists of spatially distributed sensors which
detect and measure a certain phenomenon via its
changing parameters. These readings are sent at
regular intervals of time to processing units which
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integrate the readings from clusters of sensors and
give outputs whose nature is much the same as the
inputs of the sensors. Outputs from processors
representing clusters of sensors are later integrated
to get a complete picture of the spatially
distributed phenomenon. However, before
integration is performed at the processor level, it
is necessary to have reliable estimates at each
processor. Each sensor in a cluster measures the
same set of parameters. It is possible that some of
these sensors are faulty. Hence it is desirable to
make use of the redundancy of the readings in
the cluster to

obtain a correct estimate of the parameter being
read. In short, a fault-tolerant technique of sensor
integration to obtain the correct estimate is sought.

1.1 Scope of This Paper

This paper has two objectives: The first
objective is to propose a functional
characterization of fault-tolerant integration of
abstract interval estimates considered by Marzullo
[Marz 89]. The second objective is to propose a
modified computational scheme of integration
carried out by Marzullo [Marz 89] in the case when
the number of sensors is large, wherein it is
possible to improve the accuracy of the integraed
output.

The main distinguishing feature of our
model over the original Marzullo's model is in
reducing the width of the output interval estimate
significantly in most cases where the number of
sensors involved is large.

Elsewhere we intend to generalize
Marzullo's approach to the cases when the sensor
outputs are subsets of an abstract parameter space.
The functional characterization of the fault-
tolerant integration of abstract interval estimates
described in this paper hints at an abstract
framework. We hope to develop for addressing the
general problem of fault-tolerant integration of
sensor outputs.

1.2 OQOrganization of the Paper

In section 2, we describe Marzullo's work on
sensor integration and other related work. Our
abstract model functional characterization is
detailed in section 3 and is an extension of the
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model proposed by Marzullo. In section 4, we
motivate the need for a new failure model and
present the information integration algorithm
with a specific example. Finally, we close the
paper with concluding remarks and future
directions this reach would take.

2.0 RELATED WORK

Marzullo [Marz 89] considers the case of a
processor receiving input from several sensors
whose outputs are connected intervals. He gives a
fault-tolerant integration algorithm which takes
as input the intervals representing the sensors and
gives as output of the processor a connected
interval representing the sensor values. More
precisely: Let there be n sensors, each of which
yields an interval as its output. there sensors
measure a certain physical value and their
intervals contain the physical value unless they
happen to be faulty sensors.

Thus, a correct sensor is one which contains
the actual physical value in its interval. Any two
correct sensors must overlap since they both contain
the physical value being measured.

Marzullo considers the case when almost f
sensors are faulty and gives an algorithm which
yields a connected interval as the output of the
processor, containing the physical value.

If at most f of the n sensors are faulty, then
it follows that at least n-f sensors are correct.
Marzullo considers all possible nonempty  (n-f)-
intersections of the n-sensors. A sensor which does
not belong to any of the (n-f)-cliques is faulty since
a correct sensor overlaps with at least (n-f-1) other
correct sensors. One and only one of the (n-f)-
intersections contains the physical value. Since it
is not possible to decide which intersection has the
physical value (which is as yet unknown to us) and
since the processor output is required to be a
connected interval, the smallest connected interval
containing all the (n-f)-intersections is taken to be
the output of the processor. It is easy to see that it
contains the actual physical value. The wider this
interval is, the lesser the accuracy of the processor
output. Marzullo proves the existence of bounds for
the width of this interval in terms of f.

The example described below provide a
description of integration process.
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Figure 1. Integration Interval estimates

(aj<az<a,<bz<bi<br<ag<acx<a<bbx<by)

In the above figure, we have the intervals
Ij = [aj, bjl 1 < j < 6. Overlapping one another
according to the strict chain of inequalities given
above. Here f = 3 and n = 6. So, taking all possible
(n - f) intersections gives us the intervals [a2, b3]
and [a4, bgl. Then enclosing these intervals in the
smallest possible connected interval, we have the
integrated output interval Ip given by Ip = [ a2, bg].

Kashyap et. al, [ ChKa 8%a, ChKa 89b,
HaKa 90 ] have worked with belief intervals to
solve decision problems in Expert Systems using
Fuzzy Set Theoretic techniques. The belief
intervals are however subsets of the closed
interval [0,1] and are attached to statements as
valuations to aid in Fuzzy reasoning. The intervals
considered in this paper are connected subsets of
the real line.

More specifically, the problem addressed
in our paper is that of obtaining reliable intervals
in which the correct physical value being
measured lies by taking intersections of
appropriate intervals representing sensor outputs
rather than obtaining rules of combination of
uncertainty intervals of logical statements and
syllogisms to obtain uncertainty intervals of
compound statements.

The main thrust in our paper is in the
derivation of computational schemes for narrowing
the width of the processor output in a specific
failure model and give it a functional
representation.
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2.1 Interval Representation of Sensor Readings

A sensor reads a physical variable and
gives a number as its output. However a sensor is
prone to inaccuracies and there may be some
uncertainty in the value of its output. The simplest
modeling of this is achieved by looking upon sensor
outputs as connected intervals on the real line
rather than as points. The actual value
representing the physical variable being measured
is taken to be contained in the interval associated
with the sensor if the sensor is not faulty. No
assumptions are made about the width of these
intervals or their position on the real line. Thus
each sensor value is represented by an interval
estimate. We make this notion precise in the
following definitions that are useful in
characterizing one model of sensor integration.

Definition 1 : An abstract sensor is a sensor which
reads a physical parameter and
gives out an abstract interval
estimate Ig, which is a bounded and
connected subset of the real line R.

Definition 2 : A correct sensor is an abstract sensor
whose interval estimate contains
the actual value of the parameter
being measured.

Definition 3: Let sensors si,...,sn feed into a
processor P. Let the abstract interval
estimate of Sj be Ij 1<j<n, where Ij is
the closed interval [aj,bj] with end-
points ajand bj . Define the

characteristic function Xj of the jth



sensorsj 1<j<n as follows :

%j: R— (0,1}
1V xelj .
Xj(x)= 0V xe l; V1<j<n.
T Xi
1
bi

ol aij

Figure 2. Representation of intervals

The next section addresses the question of
how the abstract sensors or abstract estimates
are combined to yield new abstract estimates.

3.0 THE PROBLEM OF FAULT-TOLERANT
SENSOR INTEGRATION

The problem of fault-tolerant sensor
integration is the integration of the I (1£j<n), to
obtain an abstract interval estimate Ip = [ap ,bpl
which is a 'reliable’ and 'fairly accurate' estimate
of the region in which the physical sensor value
lies.This integration should be fault-tolerant in
that its reliability should not be severely affected
by some of the sensors being faulty. In other words,
we seek to obtain a functional relationship
between the characteristic function Xp of Ip =

[ap,bpl and the Xj1<j<n xpX) = f(x1(x), ...,

xn(x) ) such that xp'l(l) is a fault-tolerant
interval estimate of the physical value being
measured.

We now go about obtaining a functional
representation of the integrated output estimate
under the integration scheme of Marzullo. In order
to do this we need to introduce a few relevant
operations and functions. The following facts
provide such operations for our integration
problem:
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Fact 1: If f(x) is a real-valued function, define |ifll
=sup{lfCIl | x €R) (norm of f) . That is, [Ifll
is the smallest real number a such that
f(x) <aVxeR.

Fact 2: If f(x) is a real valued function define Supp
f={x | f(x)# 0} (support of f).
n
Fact 3: Let O(x) = ij(x) to be the ‘overlap
=1
function'. For each x eR , O(x) gives the

number of intervals in which x lies or the
number of intervals overlapping at the

point x.
Remark 1: The integer l|xi0(x)l| gives the

maximum number of intervals in which
any x € fj,

Indeed, O(x) is the number of intervals
overlapping at the point x. Multiplying

Proof :
by x;(x) restricts YO(x) to the interval Ij

Iix; Ol therefore gives the maximun

number of intervals overlapping at any x
e fj.

Then i belongs to |[x:Oll-clique. Where,
g X q

by a n-clique we mean a group of n
intervals having a common intersection.
|

If xi(x) and xj(x) are characteristic
functions of intervals Ij and Ii then the
characteristic function of the interval Iinl]j
denoted xIi ~ Jj (x) is given by the product  xj(x)
xj(x).

If %i(x) is the characteristic function of Ij,
then the characteristic function of Ij¢ (the
complement set of Ij) is given by (1- %i(x)).

Thus if I1, ...In are intervals with
characteristic functions %1,...,xn , then the
characteristic function of their union YUl (x) is
given by



n
XL (x) =1- l'[l(l- xi(x)).
1=

Marzullo[Marz 89] assumes that there are
at most f faulty sensors among n sensors, and
considers the intersections of (n-f) or more sensors
as the regions in which the correct physical value
lies. An interval which does not participate in any
(n-f)-intersection is taken to be the estimate of a
faulty sensor. The output is the smallest interval
which contains all (n-f) or more intersections.

3.1. Computational Characterization

Remark 2: If at most f sensors are faulty, then we
need to consider only those Ij's for
which ||xioll 2 (n-f). Thus the
characteristic function of the set of
all points lying in (n-f) or more
intersections of the intervals Ij (1<
<n)is given by :

n
Sx)=1- 1'[1(1 - X[n-f,e0) (i O (x))
F

Where y[n-f,c0) is the characteristic
function of the interval [n-f.%).

Proof : Indeed ¥ [n-f,0)(llxj Oll) = 1 iff Iixj Ol > n-f

i.e. iff Ij has at least n-f-1 other intervals
intersecting it at some point in it.

So %[n-f,e0)(lxi OlDxj (x) = %j (x) if and only
if Ij is as described above. So that S(x) is
the support of the characteristic function
of all those points which belong to (n-f) or
more intervals' intersection. ]

Now the correct physical value belongs to
Supp(S(x)), i.e; to one of the intervals constituting
it. Marzullo proposes the smallest connected
interval containing Supp(S(x)) for the integrated
output.

More precisely the output interval
estimate Ip is given by :

Ip=[Min (x1S(x)=1},Max {xIS(x)=1}]

The above integration technique does
indeed give a connected Interval within which the
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actual physical values lies. It however includes
points which do not belong to the intervals
constituting Supp(S(x)).

Furthermore, if the intervals constituting

k
Supp(S(x)) are widely scattered over ]Ij, then I
i=1
suffers from inaccuracy since it tends to be very
broad.

4.0. A_NEW FAILURE MODEL WITH
SHARPER OUTPUT INTERVAL
ESTIMATES

We propose a failure model in which it is
possible to choose in most cases a subset of
Supp(S(x)) as the region of correct sensor value
instead of the whole of Ip as defined above. A
sensor may fail wildly, in which case there is no
correlation between the actual physical value
being measured and the interval estimate of the
faulty sensor. On the other hand, a sensor may fail
tamely, in which case although the faulty
sensor's interval estimate does not contain the
actual physical value, the interval estimate lies
significantly close to the value in a certain sense.
For example, mechanical vibrations may induce a
tame fault in dials and meters by shifting the
needless fluctuations to a region which does not
contain the correct value but lies close to it. Since
we do not know the actual physical value, we
cannot detect the tameness of a fault directly.
However tamely faulty sensor estimates tend to
overlap with correct sensor estimates because of
their proximity to the actual physical value. We
consider the case when the number of sensors to be
integrated is very large and assume that most of
the faulty sensors are tamely faulty. In this case,
we observe that correct sensors have a relatively
larger number of intervals overlapping with them
as compared to undetected faulty sensors
participating in the (n-f)-intersections, since
tamely faulty sensors overlap with correct sensor
estimates.Thus the number of sensor estimates
overlapping with a given sensor estimate is a good
index of its correctness. We make use of this
observation to narrow our output interval estimate,
namely Ip.

——



k
Let Supp(S(x))= L where Lj= [aj,Bi]
i=1
with Bj < @j+1 V 1 £i<k-1. We now perform an
evaluation of the Lj's in order to attach a weight
to each of them and choose those Lj's with
maximum weight to be the intervals which have a
high likelihood of containing the correct physical
value. We then again enclose these Lj's of
maximum weight by the smallest possible interval
and take it to be the output estimate.

Remark 3: Let %1.i(x) be the characteristic function
of Lj. Then we can define the
popularity of the jth sensor to be the

n

number Pj = kE’HXkall- 1.Pj gives
=1

the number of sensor intervals

overlapping with the jth sensor

interval.

if Ianj¢¢

1
Proof: Indeed  |IXyXil ={o if IknTj=0

n

Thus zllkajII- 1 gives the number of
k=1

intervals (apart from Ij) intersecting with

I-

j.

4.1 Narrowing of the Qutput Interval Estimate

Widtl

We would like to take the sum of the
popularities of all sensors involved in the
formation of Lj, and call it the reliability rj of Li.

Consider the set function

n

W(L= Y lxLix;jllPj ,1 < i <k defined on each L;.
=1

W(Lj) gives the sum of the number of intervals

overlapping with each sensor estimate in the (n-

f)-or-more clique L;.

jie,ri= WL)V1<i<k
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Letr=max{rj | 1<i<k}, m=min{i | rj =
r} and M = max {i | rj = r}. Consider the interval
[om,.BMm]. We take Ip* = [om,PM] as the integrated
output estimate.

It is clear that BM - oam = !Ip*ls Ipl,
where | I |is the width of the interval I. Thus in
our failure model we have in general a way of
narrowing the output estimate Ip to Ip*. However
if the number of wildly faulty sensors are as many
as the tamely faulty ones, and if they happen to
cluster somewhere else on Ip,then it is possible
that IIp*I = [Ipl. Thus the worst case for Ip* is Ip.
The chances that wildly faulty sensors mimic the
clustering behavior of tamely faulty sensors are
remote. Also if the number of sensors is very small,

it is possible that 1Ip*I = [Ip|.

For example, consider the case of three
input sensor estimates 11=[2.4,3.2], 12=[2.9,4],
13=[3.6,5]. In this case Ip=[2.9,4]. Here L1=[2.9,3.2]
and L7=[3.6,4], but they both have the same
reliability.Hence Ip*=Ip here.

4.2 The Algorithm

We now present the algorithm as follows:

[ Alzerim -]

Intervals I1, 12, . .

Input : L In, £

Output: Integrated output estimate.

begin
1.Take all (n-f)-intersections of the
intervals to yield Intervals L1, .., Lk, each of which
is an (n-f)-intersection : { Lj = [aj, bj] };

2.For eachi (1 < i £k)

i. Count the number of intervals
intersecting each of the intervals Ij (1 <j<n)
having nonempty intersection with Lj;

ii. Add these numbers up to obtain a
number rj { 1j gives the sum of the number of
intervals intersecting with intervals involved in the
formation of the L;. a is a measure of the reliability
of Li );

3. Choose the maximum of the
ri(1 si<k)andcallitr;

4. Letm=min{ilrj=r} and

M=max{ilri=r};



*
5. Assign Ip = [am, bM] to be the

integrated output estimate;

end.
4.3 A Comparison of Performance

In this new model, we find that when the
number of sensors is very large, by taking the
clustering of the tamely faulty sensors into
consideration, we reduce the output intervals
width greatly, as compared to Marzullo's [ Marz
89] output interval estimate.

The Figure 3 below illustrates the superior
performance of our model clearly. The numbers
near each interval estimate gives the number of
intervals overlapping with it. Here n = 13 and f
(maximum number of fault intervals allowed) = 10.
The The thick lines in Figure 3 are the intervals Lj
with the numbers on them indicating their
reliabilities. We may pick either the interval
with higher reliability or define a range for
reliabilities and pick intervals which fall in
these limits. The thick line of the bottom
indicates the output interval estimate for this case
in Marzullo's model.

‘\Outpul estimates /

from our model with maximum reliabilities

tpu
in Marzullo's model

Figure 3. A compariron of performance

Table 1. Popularities ot Intervals

Interval | 1) | f2 10y [ L fUs Jdg Iy |Ig |19 ] ol My
arity | 4 2 4 4 3 2 4 4 4 2 2 4 3

In table 1, we have each interval assigned
a numbering which is its popularity.

The (n - f) or more intersections (i.e. 3 to 4-
intersections here) which form the output have
reliabilities 8, 12, 15, 15, 10.
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Thus, the advantage here is that we have
the intersection weighted to help us judiciously
choose the output intervals. We may employ any
convenient rule depending upon our faith in the
tameness of the faults to pick these intervals and
enclose them by connected interval. For instance,
we may choose only those intervals with
maximum reliability (in this case, the intervals
with reliability 15) and enclose them by a
connected interval. It is clear that the worst
possible width for the final output interval
estimate is the smallest interval containing all
intersections irrespective of their weights.

50 CONCLUDING REMARKS

In order to address the general problem of
fault-tolerant sensor integration for a large class of
sensors, it is necessary to evolve a broad-based
computational framework which can accommodate
a wide range of sensors and a variety of fault
tolerant integration techniques depending upon the
phenomenon being sensed and the method of
sensing. We intend to develop a calculus of sensor
integration by regarding the sensor estimates as
subsets of an abstract parameter space and
obtaining functional representations of the
characteristics of these estimates. We then intend
to obtain rules for combining these functions to get
functions describing the characteristics of the
output according to the kind of integration that is
required to be performed.
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